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Abstract—Algorithm-based fault tolerance is an inexpensive method of achieving fault tolerance without requiring any hardware
modifications. Algorithm-based schemes have been proposed for a wide variety of numerical applications. However, for a particular
class of numerical applications, namely those involving the iterative solution of linear systems arising from discretization of various
PDEs, there exist almost no fault-tolerant algorithms in the literature. In this paper, we first describe an error-detecting version of a
parallel algorithm for iteratively solving the Laplace equation over a rectangular grid. This error-detecting algorithm is based on the
popular successive overrelaxation scheme with red-black ordering. We use the Laplace equation merely as a vehicle for discussion;
later in the paper we show how to modify the algorithm to devise error-detecting iterative schemes for solving linear systems arising
from discretizations of other PDEs, such as the Poisson equation and a variant of the Laplace equation with a mixed derivative term.
We also discuss a modification of the basic scheme to handle situations where the underlying solution domain is not rectangular.
We then discuss a somewhat different error-detecting algorithm for iterative solution of PDEs which can be expected to yield better
error coverage.

We also present a new way of dealing with the roundoff errors which complicate the check phase of algorithm-based schemes.
Our approach is based on error analysis incorporating some simplifications and gives high fault coverage and no false alarms for a
large variety of data sets. We report experimental results on the error coverage and performance overhead of our algorithm-based
error-detection schemes on an Intel iPSC/2 hypercube muitiprocessor.

The timing overheads of our error-detecting algorithms over the basic iterative algorithms involving no error detection decrease

with increasing problem dimension and become small for large data sizes.

Index Terms—Algorithm-based fault-tolerance, parallel algorithms, partial differential equations, error analysis, fault injection.

1 INTRODUCTION

A LGORITHM-BASED fault tolerance (ABFT) is a well es-
tablished technique which is used to develop reliable
versions of numerical algorithms [1], [2]. Basically, an algo-
rithm is modified so that the computed data elements pre-
serve a certain property as the computation progresses. A
lack of preservation of the property at the end of the algo-
rithm indicates the presence of errors involving data com-
putations. The algorithm-based fault tolerance technique
for a particular application may be so designed so that the
property is preserved not only at the end of all computation
on data elements but also at suitable intermediate points
during the course of the algorithm which may then serve as
intermediate checkpoints. Often, variables are introduced
to store the sums of various portions of computed data. At
intermediate points and at the end of the algorithm, the
computed data elements are summed and compared with
the variables storing the checksum. A discrepancy would
indicate an error. The low cost of algorithm-based schemes
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derives from the fact that it usually involves far fewer op-
erations to update values of checksum variables than in the
original algorithm. Reliable versions of such numerical al-
gorithms as matrix multiplication [2], [3], Gaussian elimi-
nation [3], fast Fourier transform [4], [5], QR factorization
[6], singular value decomposition [7], and several others
have been developed in the past. Recently, ABFT tech-
niques have been applied to a parallel bitonic sort algo-
rithm [8], thus demonstrating that nonnumerical applica-
tions can also be made reliable by the use of algorithm-
based checks.

In this paper, we develop low-overhead, error-detecting
versions of iterative algorithms for solving the regular,
sparse linear systems which arise from discretizations of
various partial differential equations (PDEs). First, we dis-
cuss in detail an error-detecting version of the popular par-
allel algorithm-based on successive overrelaxation (SOR)
with red-black ordering [9] for iteratively solving the linear
system arising from a discretization of the Laplace equa-
tion. We merely use the Laplace equation as a representa-
tive of a class of PDEs for which similar low-overhead er-
ror-detecting algorithms may be devised; modifications of
the error-detecting algorithm for the Laplace equation are
discussed for other PDEs with a structure similar to the
Laplace equation such as the Poisson equation and a vari-
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ant of the Laplace equation with a mixed derivative term
[10]. In our derivation of the error-detecting algorithm for
solving the Laplace equation, we restrict our solution do-
main to be a rectangular grid for ease of discussion; in a
later section we discuss a simple modification to the algo-
rithm to deal with problems with differently shaped solu-
tion domains. We also discuss an alternative algorithm with
higher overhead which may be used in situations where
higher error coverage is desired.

We also use our reliable version to demonstrate a new
technique for dealing’ with roundoff errors which can com-
plicate the invariant check step in the algorithm. Our
method for dealing with roundoff error applies error analy-
sis techniques to derive expressions for error accumulation
which are used to accumulate the roundoff error at run-
time. This scheme gives better error coverage results than
earlier techniques [7], [3], [11], and has been discussed in
detail for other algorithms [12], [13], [14].

The organization of this paper is as follows. We first dis-
cuss the simple serial SOR algorithm for solving the
Laplace equation in order to motivate the reader for the
reliable parallel algorithm which is our goal. We demon-
strate our low overhead invariant calculation and error
analysis for the reliable version of the serial algorithm. We
then present the reliable version of the parallel algorithm
involving invariant and error bound computation. Next, we
discuss how the error-detecting SOR algorithm presented
for the Laplace equation may be modified to obtain error-
detecting algorithms for solving other similar PDEs and the
modification necessary to deal with irregular solution do-
mains. We then discuss an alternative error detecting
scheme which may be applied to the same class of iterative
schemes which possesses higher overheads but which can
also be expected to yield higher error coverage. We present
experimental results on an Intel iPSC/2 hypercube indi-
cating error coverage and timing overhead for both the er-
ror detecting parallel algorithms introduced in this paper.
Finally, we compare our approach to deriving an error-
detecting SOR algorithm to an earlier approach reported in
[15] before concluding our paper.

2 SERIAL ALGORITHM FOR SOLVING THE LAPLACE
EQUATION USING SUCCESSIVE OVERRELAXATION

2.1 Serial SOR Algorithm

The Laplace equation is a second-order elliptic partial dif-
ferential equation described by the following equation

Qu. Ju

o
We may “solve” the Laplace equation numerically over a
region by discretizing it in the x and y directions to obtain a
grid of points and then computing the approximate solu-
tion values at these points. Assuming that the distances
between neighboring points in the grid in the x and y di-
rections is h, we may replace the partial derivatives ap-
pearing in (1) by finite difference approximations to obtain
the following equation approximating (1) at the grid points.

=0 (1)

uxip, y)) + ulx;, Yir) + u(xi—y, yp) + ulx; yj—l) —4ux, yj) =0 ()

In (2), we have x; = i and y; = jh. Boundary conditions are
usually specified by providing the values of u(x; y,) at the
boundary points of the grid. Equation (2) then forms a basis
for developing an algorithm for iteratively solving for the
values of u(x; ;) at interior points in the grid. The algo-
rithm is shown in Fig. 1 and is often referred to as the itera-
tive Gauss-Jacobi technique [9]. Here the value u(x; y)) is
assumed to be stored in the array element ul[i][j]. It is as-
sumed that the grid is discretized so that it has n + 2 points
along each dimension, though the more general case of
having a different number of grid points along each dimen-
sion does not add any complication to subsequent analyses.
In Section 4, we discuss a modification by which even ir-
regular solution domainis may be handled. It is also as-
sumed that rows 0 and # + 1 and columns 0 and n + 1 are
initialized to store the boundary conditions. The termina-
tion condition is determined at runtime by specifying that
the outer loop continue until the maximum difference over
all grid points of a point value at the current iteration from
its value at the previous iteration drops below a threshold.
Note that the algorithm in Fig. 1 is assumed to execute the
outermost loop ifer times. We omit the convergence check
in subsequent discussions since it has no bearing on the
development of the error-detecting algorithm.

for(k=0;k<iter;k++)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
t[i][j] = 0.25*(u[i][j-11+u[i][j+1]+uli-1][j1+uli+1][31);

for(i=1:i<=n;i++)
for(j=1;j<=n;j++)
ulilfj] = tlilfl;
}

Fig. 1. Code for the solution of the Laplace equation by the iterative
Gauss-Jacobi technique.

We may use the updated values of the u[i][jls as soon as
they are available in the update statement of the Gauss-
Jacobi loop to obtain the code in Fig. 2, which is referred to
as the iterative Gauss-Seidel technique. This modification
results in asymptotically faster convergence to the steady
state values [10]. We may further accelerate the rate of con-
vergence to the steady state value by introducing a pa-
rameter @ to overrelax the computation of Fig. 2, so that
each updated point is now computed as an average of its
old value and the values of its four neighboring points, as
shown in Fig. 3. The code of Fig. 3 is often referred to as a
successive overrelaxation iterative method (SOR) and w is
referred to as the relaxation parameter. A careful choice of
o results in much faster convergence rates than the previ-
ous two schemes. The parameter @ lies between 1 and 2 for
an overrelaxation technique; in some cases it is useful to
choose @ between 0 and 1 instead—this is referred to as an
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underrelaxation technique. The correctness of the error-
detecting algorithm we derive in this paper is not depend-
ent on the range of w in any way, so that both overrelaxa-
tion and underrelaxation algorithms may be modified to
become error-detecting in an identical manner. Thus the
term overrelaxation in the rest of the paper may refer to
both overrelaxation and underrelaxation techniques. The
code of Fig. 3 is hard to parallelize since each update of
u[i][jl involves new values of u[i]{j — 1] and u[i - 1]j] and
old values of u[il[j + 1] and u[i + 1][j]. However, a modified
SOR algorithm may be devised with the same asymptotic
rate of convergence as the algorithm of Fig. 3 which is well
suited for parallel implementation. In this algorithm, the
grid points are divided into two disjoint sets. We refer to
those ul[il[j] for which i + j is even as red points and those
for which i + j is odd as black points. Then, each update of
Fig. 3 may be split up into two updates, one involving only
the red points and the other involving only the black points,
as shown in Fig. 4. The code of Fig. 4 is referred to as a Red-
Black SOR method. The update of each red point utilizes
the values of its four neighbors, which are black points, and
the update of each black point utilizes the values of its four
neighbors, which are red points. Thus, parallelizing the
code of Fig. 4 poses no problem since we may first update
all red points in parallel and then update all black points in
parallel. We refer to this algorithm as the Red-Black SOR
algorithm. The code of Fig. 4 forms the basis of our fault-
tolerant serial and parallel algorithms.

for(k=0;k<iter;k++)
{
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
ulil[j] = 0.25*(u[i]j- 1 +ulilfj+1 J+uli- G uli+ 1)
}

Fig. 2. Code for the solution of the Laplace equation by the iterative
Gauss-Seidel technique.

for(k=0;k<iter;k++)
{
for(i=1;i<=n;i++)
for(j=1:j<=n;j++)
ulil] = (L-w)*u[iI(]+0.25*w*(ufi] -1 +uli][j+1 }+uli- LI F+ul LG D;
}

Fig. 3. Successive overrelaxation code for the solution of the Laplace
equation.

2.2 Serial Red-Black SOR Algorithm with Checks

The idea for a fault-tolerant algorithm for the Red-Black
SOR algorithm stems from the idea of maintaining check-
sums based on the linearity property [7]. We assume that n
is even, though the case when 7 is odd may be treated
similarly. For each red-black update, we make the follow-
ing observations:

1) Every red interior point is used in the update of ex-
actly one red point and every black interior point is
used in the update of exactly one black point.
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2) Every black boundary point is used in the update of
exactly one red point and every red boundary point is
used in the update of exactly one black point.

3) The black points u[1][n] and u[n][1] are used in the
update of exactly two red points. The red points
ul1l[1] and u[n][n] are used in the update of exactly
two black points.

4) The black points for whichi=lori=norj=lorj=n

except for u[ll[n] and u[n][1] are used in the update

of exactly three red points. The red points for which
i=lori=norj=1orj=n except for u[l][1] and

u[n]n] are used in the update of exactly three black

points.

All other black points are used in the update of ex-

actly four red points. All other red points are used in

the update of exactly four black points.

5

o

Observation 1) follows directly from the statement for
updating the red points in Fig. 4. The remaining observa-
tions are illustrated in Fig. 5 for the black points. Observa-
tions 1) through 5) lead us to maintain a sum on all the red
points and update this sum at the end of each update of the
red points. Let us denote the sum of all red points by Sg, the
sum of all red boundary points by Sgg, the sum of u[1][1]
and u[n][n] by Sg. the sum of the red points of 4) by Sgo
and the sum of the red points of 5) by Sg;. The correspond-
ing sums of the black points are denoted by Sg, Sgs, S, Sgo,
and Sg;. Each red interior point contributes (1 — @) times its
value to the updated value of a red point while each black
point contributes 0.25w times its value to each red point
update it is involved in. Similarly, each black interior point
contributes (1 — @) times its value to the updated value of a
black point while each red point contributes 0.25w times its
value to each black point update it is involved in. These last
two observations, along with observations 1) through 5),
allow us to update Sy and Sy following the updates of the
red and black points respectively in terms of the other sums
as follows:

Sg ¢~ (1 — @)Sg + aXSgp + 0.75S50 + 0.555¢ + 0.2555,)  (3)

Sp < (1 — @)Sg + @S + 0.75850 + 0.585¢ + 0.255z5)  (4)

Following the update of the red points, besides updating Sy
as shown in (3), we also need to recompute Sgp, Spe, and Sy
since these have changed also. Similarly, following the up-
date of the black points we need to recompute Sy, S, and
Ser. The boundary elements are constant and -so we do not
need to recompute Sgy or Sgs. (Note that in the parallel im-
plementation, the boundary elements for each processor’s
portion of the grid may need to beé recomputed, since these
may be interior points in the global grid.) Spo and Sg, re-
quire O(n) operations to compute, while computing Szc and
Sgpc require just one addition operation. Since Sy is the sum
of all red interior points, i.e., Sy = S + Sge + Sgy, and simi-
larly Sy is the sum of all black interior points, i.e., S5 = Sgo +
Spc + Sp, we may compute Sy; and Sg; in constant time once
the red and black updates, respectively, and the updates of
all other red and black sums, respectively, have been com-
pleted, using the following equations
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Sri <= Sg — Sro — Sre ®)

Spr ¢~ Sp = Spo — See 6

After a predefined number of iterations has been executed,
the sum of the red interior points is compared with Sg, and
the sum of the black interior points is compared with Sj.
The check could be applied after every iteration but in the
interests of low overhead the check could be applied after a
user specified number of iterations have been completed. In
the absence of computational faults, these values should be
equal to within a tolerance. (The tolerance is necessary due
to roundoff error accumulation). The code for the Red-
Black SOR algorithm with additional checksums for error
detection is shown in Fig. 6.

for(k=0;k<iter;k++)
{
/* update red points */
for(i=1;i<=n;i++)
{
for(j=2-(1%2);j<=n;j+=2)
ufil[jl = (1-w)*ulil[j] + 0.25*w*(u[i][j-1T+uli]j+11+uli-1][1+uli+11GD;
}
/* update black points */
for(i=1;i<=n;i++)

for(j=1+(1%2);j<=n;j+=2)
ulilfj] = (L-wy*ulil[j] + 0.25*w*(u[i][j-11+uli](j+1]+uli-11G1+uli+ 11[D;

}
}

Fig. 4. Red-Black SOR code.

hrbrbrhbr br brbrbr
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Fig. 5. Figure showing couplings of black points with red points.

for(k=0:k<iter;k++)

{
/* update red points */
for(i=1;i<=n;i++)
{

for(j=2-(1%2);j<=n;j+=2)
ufil[j] = (L-w)*ufil[§] + 0.25*w*(u[ilfj- ] +ulilfj+1 +uli-1]j]+uli+11GD;

}
/% update red sums */
SR = (1-w)*SR + w*(SBI+0.75*SBO+0.5*SBC+0.25*SBB),
SRO = 0;
for(j=3;j<=n;j+=2)
SRO +=uf1][j];
for(j=2;j<n;j+=2)
SRO +=u[n][j];
for(i=3:i<=n;i+=2)
SRO +=u[i][1];
for(i=2;i<n;i+=2)
SRO += u[i}[n];
SRC = u[1][1]+u[n}[n];
SRI = SR-SRO-SRC;
/* similarly update black points and black sums */

}

/# check sum of red points */

SUM =0;

for(i=1;i<=n;i++)
for(j=2-(1%2);j<=n;j+=2)
SUM +=ufil[j;

if(abs(SUM-SR)>tolerance)

error();

/% similarly check sum of black points */

Fig. 6. Red-Black SOR code with checksums for error detection.

2.3 Error Bound Derivation

Due to differences in roundoff error accumulation in the
red and black points and Sy and Sg, one has to allow for a
threshold when comparing between the sum of the red
points and Sg and the sum of the black points and Sg. Previ-
ous researchers have either suggested an experimental
evaluation of the threshold [7], [3] which is at best useful
for data sets of fixed size and limited data range or a man-
tissa checksum test [1] which suffers from the disadvantage
of not being able to check floating point additions without
recourse to duplication or experimental determination of
the threshold. We deal with the thresholding problem in a
different manner by computing the error expressions for
the variables involved in the computation. In order to sim-
plify our error analysis, we compute the global error at the
end of one iteration of the outer loop in terms of the local
error for the loop and the global error accumulation upto
the end of the previous iteration. A more detailed discus-
sion of this approach and its application to several other
algorithms can be found in [12]. Error analysis of the code
in Fig. 6 forms the subject of the following paragraphs.
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The statements which we need to analyze for error are of
four types

Da=b+c

2a=b-c—d

3 a=Ab+BCc+d+e+f)
4) a =Ab+ Blc + Cd + De + Ef)

where lowercase letters denote variables and capitals de-
note constants. In subsequent discussions, we use the nota-
tion lerr(v)| to denote an upper bound on the absolute er-
ror associated with a variable v. We further use 9 to denote
the value of a variable v including the floating point errors
accumulated in computing v. Thus, we can relate 9 , v, and

err(v) by
9] < [o] + lerr(v)| )

We now proceed to derive error bounds for the expressions
in 1), 2), 3), and 4) above using the following fundamental
lemma concerning error accumulation in floating point
computations.

LEMMA 1. A floating point computation of z, denoted by z =
fllx ® ), (where ® denotes any floating point operator) re-
sults in an error of err(z) = (x ®yole, lx@y =xdy)

(1+ ), where | 8| < e=2", where t denotes the mantissa
size.

PROOF. Refer to [16], page 113. O

In subsequent derivations we will assume that all ele-
ments taking part in the floating point computations are
positive. Thus, the absolute values of each element are the
same as their actual values. Also, in this case, the J of
Lemma 1 is always positive. We will indicate in Section 2.4
how to initially transform the values on the boundary and
interior of the grid so that at all subsequent steps, the value
of each grid point is positive.

The error expression for 1) is given by the following
theorem.

THEOREM 1. The error accumulation in the computation of the
floating point expression
i=fib+0) ®)
is given by
err(a) <ae + err(b) + err(c) 9

PROOF. By Lemma 1 we then have 4 = (b + &)(1 + 6,). Using
Lemma 1 to get the bound & < € and discarding the

O(€) terms which arise under the assumption that

they are negligible compared to the O(e) terms, we
obtain the following relation

G<hb+8+(b+0)e (10)

Using (7) to substitute for the hatted variables in (10)
and once again using the simplification of discarding
the O(€) terms which arise, we get the following
bound on the value of 4

d<a+(b+ce+err®) + err(c) (11)
from where we obtain the following relation for err(a)
err(a) < (b + c)e + err(b) + err(c) 12)
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Substituting 2 = b + ¢ in the above expression com-
pletes the proof. O

The error expression for 2) is given by the following
theorem

THEOREM 2. The error accumulation in the computation of the
floating point expression

a=fib-¢-d) (13)
is given by

err(a) < (2b + 2¢ + dye + err(b) + err(c) + err(d)  (14)

PROOF. Let us denote by f; the floating point computation of
b—¢,ie., we have t, = ) By Lemma 1, we then
have t; = (b — &)(1+8,). We now have a = fl(t, —d).
By applying Lemma 1 once get
a=(t - d)(1 + d,). By expanding out #. and using

again we

Lemma 1 to get the bound | | < € and discarding the

O(") terms which arise under the assumption that

they are negligible compared to the O(e) terms, we
obtain the following relation

G<b-2-d+02b+26+d)e (15)

Using (7) to substitute for the hatted variables in (15)
and once again using the simplification of dlscardmg
the O(¢€) terms which arise, we get the following
bound on the value of 4

A<a+Q2b+2c+de+err(b) +err(c) + err(d) (16)
from where we obtain the following relation for err(a)
17)
which completes the proof. O

err(a) £ (2b + 2¢ + d)e + err(b) + err(c) + err(d)

The error expression for 3) is given by the following
theorem:

THEOREM 3. The error accumulation in the computation of the
floating point expression

4= fllAb+BC@E+d+e+f) (18)
is given by
err(a) <2ae+ BC(c + 4d + 3e + 2f)e + Aerr(b) +
BClerr(c) + err(d) + err(e) + err(f)) (19)

PROOF. Let us denote by t;, t,, and #; the floating point com-
putations Aé, BC, and &+ d+2+ f
Then, applying Lemma 1, we have , = Ab(1 + é,) and
t, = BC(1 + 6,) while we may show

respectively.

£6+El+é+f+(3€+3fl+2€+f)e
by repeated applications of Lemma 1 in a manner
similar to the proof of Theorem 2. Next let us denote
by 1, the floating point product fi(t,t;). Applying
Lemma 1, we obtain #; = (1 + &). Thus, we may
write 4 = fl(t; +t,) which may be similarly written as
a=(t +t)1+8,) by an application of Lemma 1.
Now expanding out each of the £s, using Lemma 1 to
bound each & and discarding the O(é") terms which
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arise, we get the following equation
A< Ab+BCE+d+2+ )+ QAD+3BCE+d+¢+ e+
BC(3¢ +3d + 2 + f)e (20)
We now use (7) to substitute for the hatted variables
in (20) to obtain the following equation
d<(a+QAb+3BCc+d+e+[)e+BC(Bc+3d+2e+ fle+

Aerr(b) + BC(err(c) + err(d) + err(e) + err(f))e 21)
from where we obtain the relation
err(a) < (2Ab+3BC(c+d +e+ f)e+
BC(Bc¢ +3d + 2e + e + Aerr(b) +
BC(err(c) + err(d) + err(e) + err(f)) (22)

Sustituting a = Ab + BC(c + d + e + f) in the above ex-
pression proves the theorem. O

The error expression for the floating point computation
of 4) is as follows

THEOREM4. The error accumulation in the computation of the
floating point expression

a = Ab+B@+Cd + Dé + Ef) (23)

is given by

err(a) £ (2a + B(3c + 4Cd + 3De + 2Ef)e +
Aerr(b) + Blerr(c) + Cerr(d) + Derr(e) + Eerr(f)) (24)

PROOE. The derivation is similar to the proof of Theorem 3
and is omitted. O

2.4 Modified Algorithm with Checks
and Error Bounding

The derivation of the error expressions now enables us to
write a fault-tolerant version of the algorithm in Fig. 7
which also computes the error bounds on the fly. We make
two initial transformations to the original problem. Initially,
before starting the iterative solution process, we determine
the value of the negative boundary element of largest mag-
nitude, say M and add IM! to all points on the grid
(boundary and interior). This results in all points on the
grid taking on positive initial values. It may easily be veri-
fied that from this point on, the u[il[jls computed in each
iteration exceed the corresponding ulil[jls of the unmodi-
fied problem by exactly IMI. Thus, the solution to the
original problem may be recovered by subtracting |MI
from each of the uli][jls computed in the modified problem.
Also note that the u[i][j] values in the modified problem are
always positive, so that the error expressions of Section 2.3
may be directly applied. Another initial modification which
we introduce is scaling the elements by dividing each ele-
ment by the largest boundary element after translating
them by the value of the negative boundary element of
largest magnitude. Again, it may be easily verified that
following the latter modification, the magnitude of every
element in subsequent iterations of the algorithm lies be-
tween 0 and 1, leading to an easy correctness check at in-
termediate points in the algorithm. The solution to the
original problem at any point may be recovered by simply
scaling the elements with the reciprocal of the boundary
element of largest magnitude.

for(k=0:k<iter;k++)
{ /# update red points */
for(i=1;i<=n;i++)
{
for(j=2-(1%2);j<=n3j+=2)
ulil[jl = (--w)*ulilG] + 0.25*w*(i]lj-1]+ulillj+ 1 H+uli- 1] +uli+11(]);

/% update red sums and error variables */
SR = (1-w)*SR + w*(SBI+0.75*SBO+0.5*SBC+0.25*SBB);
errSR_ = 2*SR+3.25*w*SB+(1-w)*ertSR_+w¥errSB_;
errSR = (1-w)*errfSR+w*(errSBI+0.75*errSBO+0.5*errSBC+0.25%errSBB)
+2*w*SR+w*(2*SBI+3*SBO+1.5*SBC+).5*SBB);
SRO = errSRO = 05
for(j=3:j<=nyj+=2)
{
SRO +=u[1]{j];
errSRO +=SRO;
}
for(j=2;j<n;j+=2)
{
SRO +=u[nl[jl;
ertfSRO += SRO;
}
for(i=3si<=n;i++)
{
SRO +=ul[i][1];
ertSRO += SRO;
}
for(i=2;i<n;i+=2)
{
SRO +=uli][n];
errSRO +=SRO;
}
SRC = u{1]f1}+uln]|n];
errSRC =SRC;
SRI = SR-SRO-SRC;
errSRI = errSR+errSRO+errSRC+2#(SR+SRO)+SRC;

/* similarly update black points and black sums */

}

/* check sum of red points */
erSUM = SUM = 0;
for(i=1;i<=n;i++)
lor(j=2-(1%2);j<=n;j+=2)
{
SUM +=ulilljl;
errSUM += SUM;
}

if(abs(SUM-SR)>(errSR+errSR _+errSUM)*pow(2.0,-mantissa_size))
error(); .

/* similarly check sum of black points */

Fig. 7. Error detecting SOR code incorporating error expression
computation.

Using Theorems 1 through 4 to compute error expres-
sions, we get the code shown in Fig. 7. There are three
points to note here.

First, we store the error bound for a variable called v in a
variable called errv. For each of the sum variables, the error
variables may be updated by using one of the three error
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expressions derived in Section 2.3. Thus, to keep track of
the error in updating the value of the checksum variables
storing the sum of the red and the black points (denoted by
SR and SB, respectively), we have the error variables errSR
and exrSB. However, we need to introduce two extra error
variables errSR_ and errSB_ which keep track of the total
error accumulation of the red and black points respectively
(as opposed to the error in updating the variables which
store the checksums). The expressions for updating errSR_
and errSB_ in each iteration shown in Fig. 7 may be derived
by summing over all red and black points, respectively, the
error expressions for each individual red or black point
which may be obtained by an application of Theorem 3. The
sums of the errors over the red points are bounded by the
old value of errSR_ while the sums of the errors over the
black points are bounded by the old value of errSB_ since
the values of the black boundary points never change and
thus do not incorporate any roundoff errors.

Second, wherever error bounds for individual elements
of u[i]fj] arise in our error expressions, we drop them since
maintaining error bounds for individual grid elements
would require too much computation overhead. This ap-
proximation still leads to the error expressions acting as
upper bounds on the error in practice.

Third, we postpone the multiplication of the error vari-
ables by € to the very end, when the error variables are ac-
tually used to compute the tolerance for the check on the
sums of the red and black points. This saves some extra
computations.

3 PARALLEL ALGORITHM FOR SOLVING THE
LAPLACE EQUATION

3.1 Parallel SOR Algorithm

The serial Red-Black SOR code with checks shown in Fig. 6
lends itself easily to efficient implementation on a parallel
machine. We assume that the underlying architecture is a 2-

dimensional mesh with N; and N, processors in each di-
mension. For simplicity, we assume that the grid dimen-
sions (assumed to be 1 in each direction) are divisible by

2N; and 2N,. Then, the initial data distribution is blockwise

with the processor in the mth row and Ith column in the
mesh receiving the block containing the interior points

ulilfjl, fF+1<i< (—”%, i< %"— The boundary

points are distributed to processors holding the adjacent
interior points. This is shown in Fig. 8 for a 4 X 4 mesh of
processors. At the end of each iteration, each processor in
the mesh receives from its north and south neighbors (if
they exist) messages containing the elements of u adjoining
the elements in its top and bottom rows respectively. Simi-
larly, each processor also receives from its east and west
neighbors messages containing the elements of 1 adjoining
the elements in its rightmost and leftmost columns respec-
tively. Each processor then updates its portion of the grid in
a manner identical to the serial algorithm, and then pro-
ceeds with the next iteration of the algorithm.
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Fig. 8. Data distribution for parallel SOR code.

3.2 Parallel Algorithm with Checks
and Error Bounding

From the discussion in Section 3.1, we note that from the
point of view of a single processor, the computations per-
formed by it are exactly the same as the serial algorithm
being used to solve a problem of smaller dimensions, ex-
cept possibly for nonconstant boundary elements received
from neighboring processors. Thus we may incorporate
fault tolerance into the parallel algorithm in the same man-
ner as for the serial algorithm by introducing the variables
for keeping track of the sums of the red and black points of
each processor’s local block of 1 and using the same expres-
sions as for the serial-algorithm. Our error bound expres-
sions for the sum variables which were developed for the
serial algorithm via Theorems 1 through 4 are valid here as
well since now each processor performs the same kind of
operations as in the serial case, except that the boundary
elements for the processor may not be fixed in this case.
Thus, we need to recompute the sum of the red and black
boundary elements following the red and black updates in
each iteration, unlike the serial algorithm where these sums
only needed to be computed once before the beginning of
the iterative updates. Besides dropping error variables in-
volving individual elements of #, as in the serial algorithm,
we make the further simplification of dropping error vari-
ables involving the boundary elements wherever they arise
in updating the error expressions for a particular processor
since otherwise we would have to maintain error-variables
for each element of u, an unacceptably large overhead. |
(Recall that in the serial algorithm, the boundary elements
were not computed on and thus did not accumulate any
roundoff errors). We have found that even with this simpli-
fication, our error expressions act as an upper bound on the
error in practice. Also, there is a possibility that boundary
elements received from a neighbor might be in error. We
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therefore translate and scale the initial data as for the serial
algorithm. Recall that this ensures that the values of all
elements involved in the computations lie between 0 and 1
at any point in the algorithm. This property may be used to
check the correctness of the boundary data received from
neighbors. Gross errors which cause any element to take on
values less than 0 or greater than 1 can be immediately de-
tected. More subtle errors are likely to be detected when we
compare the values of SR and SB and the sum over all red
and black points of u, respectively, on every processor at the
conclusion of the algorithm. In the interests of high error cov-
erage, processors could be paired so that each processor
maintains checksums on not its own data, but on the data of
its pair processor. This would double the communication at
the start of each iteration, since each communicated data
element would now have to be sent to the pair processor as
well in order to enable it to perform the checksum updates.
Alternatively, if the algorithm is devised to detect errors
caused by transient faults, it would suffice for each processor
to maintain checksums on its own data, preserving the com-
munication requirements of the original algorithm. In Section
5, we describe an alternative error-detecting approach where
communicated data is subjected to a more rigorous check
prior to its use in subsequent updates.

4 MODIFICATIONS TO ERROR-DETECTION
ALGORITHM

In this section we discuss how the error-detecting parallel
algorithm for solving the Laplace equation may be modified
to handle other PDEs. We also discuss a modification to han-
dle the case where the solution domain is not rectangular.

4.1 Application of the Error-Detection Scheme to
Other PDEs

4.1.1 Poisson Equation

The Poisson equation has a form similar to the Laplace
equation except that the right hand side of the equation,
instead of being zero, is some function f of x and y, as
shown below.

Ut 1, =f (25)

As was the case for the Laplace equation, we may obtain a
discrete analog of the Poisson equation over a grid by re-
placing the partial derivatives in (25) by centered difference
approximations to obtain the following equation for com-~
puting the value at a grid point in terms of the values of its
neighbors and the value of the function f at that point

Xy, ]/j) +ulx,, yj+l) +ulx;y, Y+ u(x;, yj—l) —4u(x,, y/) =
WfCx, v (26)

where, as before x; = il, y; = jh, and } is the spacing between
adjacent points in the grid in both the x and y dimensions of
the grid.

As was the case for (2), (26) may also be used to derive
an iterative SOR method using Red-Black ordering in
which the updates of red and the black points proceed in an
almost identical fashion to the updates shown in Fig. 4 ex-
cept that now we have an additional term of —a)hzf[i][j] /4

(assuming that the value f(x; y,) is stored in the array ele-
ment f[i][j]} added to ul[i}[j} during the update of uli][j]. At
the start of the algorithm, we compute the sum of f[i][j]s for
the red points and the black points and store them in the
variables Fy and Fy respectively. Since the f[i][jls are not
modified during the course of the algorithm, the values of
Fr and Fj remain unchanged throughout the algorithm. The
equations for modifying Sy and Sy at the end of each itera-
tion of the algorithm are then changed as follows

SR = (1 - a))SR + GXSBI + 0.75530 + O'SSBC + 0.2553]3)
+0.251" aFy @7

Sg = (1 — @Sy + XSy + 07555 + 0.55x¢ + 0.255;5)
+0.25H oy (28)
where the Sys are defined as earlier. Note that the only dif-
ference between (3) and (4) and (27) and (28) is the addition

of the terms involving F, and Fy. The equations for updat-
ing Sgy and Sg; are exactly the same as (5) and (6).

4.1.2 Laplace Equation with Mixed Derivative Term

Consider a variant of the Laplace equation given by the
following equation

29

where 4 is a constant. Upon using standard finite difference
approximations for the partial derivatives as before in the
above equation, we obtain the following equatjon

ul g, Y+ g, ¥) + ulxg, ) + ulxg, y ) - 4G, y,) +

Use + Uy + atty, =0

a
z [y, Vi) = w0 Y ) — w0 Yop) +ulx g, yi)1=0 G0

where x,, y;, and h have their earlier meanings. If we use
(30) as a basis for the iterative solution of (29) over the grid,
we notice that an update of u[i}[j] (where ufi]{j] is assumed
to be defined as earlier) requires the values of not only
ufi + 11[j], uli - 11(j], ulillj - 11, and ulil[j + 1] as for the Pois-
son and Laplace equations, but also the values of u[i + 1](j + 1],
ufi + 1][j— 1], u[i — 1][j + 11, and u[i — 1][j — 1] as well. This is
illustrated in Fig. 9. A parallel SOR algorithm may be de-
veloped based on (30). Multiple colors are introduced and
each grid point is assigned one color so that each point re-
quires the values of only points colored differently from
itself for its update. One SOR update is then composed of
multiple Jacobi-like sweeps, one for each color, where first
we update all points of a particular color in parallel, then
we update all points of the next color, and so on until we
update all points of the last color in the last sweep [10]. For
(30), four colors in the ordering indicated by Fig. 10 suffice
to decouple one SOR update step into four Jacobi-like up-
date steps for the four colors (We use the letters R, B, G, W
to indicate the colors Red, Black, Green and White respec-
tively). We will refer to this algorithm as the 4-color SOR
algorithm. Fig. 11 shows the coupling of a red point to its
neighboring points, none of which is a red point. It may be
similarly verified that no point in Fig. 10 is coupled with a .
point of the same color. To derive an error detecting ver-
sion, each sweep in the 4-color SOR algorithm for the modi-
fied Laplace equation may then be treated in a manner
similar to the red or the black sweep for the Red-Black SOR
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algorithm for the basic Laplace equation. We need to intro-
duce variables Sy, Sg, S, and Sy for keeping track of the
sums of points of every color. In order to derive simple ex-
pressions based on the linearity of (30), we need to intro-
duce additional variables to keep track of the sum of vari-
ous subsets of points within each color. Two points be-
longing to the same subset have the same color and are in-
volved in the updates of the same number of points of an-
other color for every other color. For example, in Fig. 12
each red point with a box around it belongs to the same
subset of red points since each is involved in the updates of
three black, three white, and two green points. For each
color, we may categorize these subsets into boundary
points, corner periphery points, other periphery points and
interior points. These categories are analogous to the cate-
gories Sy, Sxc, Sxo, and Sy; (X = R or B) for the error-
detecting Red-Black SOR algorithm, except that for the 4-
color algorithm we now have X =R, B, G, or W. It is then a
simple matter to derive the equations for updating each Sy
in terms of the various Sy; X =R, B, G, or Wand T =B, C,
O, or I) based on (30). The derivation proceeds in a manner
very similar to the derivations of (3) and (4) and is not de-
tailed here. The values of the various Syrs need to be com-
puted once at the start of the algorithm; subsequently, at

the end of each iteration of the algorithm, we need to re-

compute Syz (may be omitted for a serial implementation
since boundary elements do not change), Sy and Sxq
(X'=R, B, G, or W) pertaining to categories of elements on
the boundary and periphery of the grid (analogous to the
computation of Sgg, Spe, Sros Ss Spe, Spe, and Sy for the
Red-Black case) by summing the new values of the ele-
ments in each of these categories. This summing, however,
involves only O(N) operations for an N x N grid, while each
iteration of the 4-color SOR algorithm involves O(N?) op-
erations. Thus the overhead due to these computations di-
minishes with increasing problem size. Once the sums for
various categories of boundary and periphery elements
have been computed, the new sums of the interior elements
of each color may be computed by subtracting off the new
values of the sums of the boundary and periphery elements
for each color from the newly computed sum for all ele-
ments of that color, in a manner analogous to (5) and (6) for
the Red-Black case.

XY ) o Ky (g Y1)

o~ |

(K% ) = Gy (Kpipp)

(Xi+1 ’yj—l ) (Xi+1 ’yJ) (Xi+1 ’}3+1 )

Fig. 9. Coupling of a point to its neighbors in the modified Laplace
equation.
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Fig. 11. Coupling of a red point to its neighbors using the coloring
scheme of Fig. 10 for the modified Laplace equation.
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Fig. 12. Red points belonging to the same subset in the 4-color SOR
algorithm. i
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4.1.3 Nonrectangular Solution Domain

Let us consider a problem where we need to solve the
Laplace equation over a nonrectangular solution domain
such as the one shown in Fig. 13. One may derive an error-
detecting Red-Black SOR algorithm by introducing the
same categories of points as in Section 2.2, namely Syg, Sxc,
Sxo, and Sy;, (X = R or B). As before, each of these categories
of points contributes to the update of one, two, three and
four points of opposite color, respectively. The points be-
longing to each of these categories for the nonrectangular
domain of Fig. 13 are shown in Fig. 14. As before, variables
Sx, (X =R or B), are introduced to keep track of the sums of
the red and the black points separately. The update equa-
tions for the Sys and the Sy;s are identical to (3), (4) and (5),
(6) in Section 2.2, and we have to update sums of the re-
maining categories of points by-summing all points in each
of these categories at the end of each iteration, as before.
Thus once we have identified the various categories of
points within the irregular solution domain, the remainder
of the error-detecting algorithm is identical to the algorithm
described in Section 2.2 for obtaining the solution over a
rectangular domain.

Fig. 13. A nonrectangular solution domain for the Laptace equation.

5 AN ALTERNATIVE SOR ALGORITHM WiTH HIGHER
ERROR COVERAGE

Although the parallel error-detecting algorithm for solving
the Laplace Equation described in Section 3 offers very low
overheads over the basic parallel algorithm, the check in-
volving the communicated elements at the end of each it-
eration of the algorithm is not a very good one. This is be-
cause we only perform a range check over the values of the
communicated data elements. It is possible that faults can
cause some of the communicated data elements to take on
erroneous values which do not violate the range check.
Such errors would pass undetected and be used in subse-
quent updates on nonfaulty processors. Also, since com-
municated data is used in the updates of both grid elements
as well as their checksums, undetected errors in communi-
cated data could corrupt both the grid elements as well as
the checksums on a nonfaulty processor, which could result

MRS

Red boundary points (summed in S g5 )

Black boundary points (summed in S g )

Red corner points (summed in S )

Black corner points (summed in S )

Other red periphery points (summed in S-p )
Other black periphery points (summed in S g )

Red interior points (summed in S )

®
®
@
P
(b

Fig. 14. Various categories of points for the nonrectangular domain of
Fig. 13.

Black interior points (summed in S g;)

in the passing of the final checksum check. A stronger
check on the integrity of the communicated data prior to
their use in updates would result in higher error coverages.
In this section we describe a somewhat different approach -
than the algorithm of Section 3 in which each communi-
cated data element is subjected to two separate checksum
checks prior to its use in the subsequent update. Although
this approach is expected to lead to higher error coverages,
it also entails higher overheads than the algorithm of Sec-
tion 3. However, as in the algorithm of Section 3, the over-
heads for the following approach also diminish with in-
creasing problem size, becoming negligible for large prob-
lem sizes.

The algorithm employs the same data distribution as
earlier. Each processor is paired with a neighboring proces-
sor. Each processor maintains checksums over the red and
black points of every row and column owned by its pair
processor. At the start of the algorithm, each processor re-
ceives its own as well as its pair processor’s data. Thus, at
the start of the algorithm, all nonfaulty processors compute
the correct values for their pair’s checksums. The key to the
error detecting algorithm is to observe that each data ele-
ment communicated by a processor at the start of an itera-
tion can be subjected to checksum checks on a different
processor prior to its use in updates for that iteration. To
describe the new algorithm, we focus on the additional
computations performed by a particular processor p on be-
half of its pair processor p’. We assume that at some point,
processor p” may become faulty, and indicate how its faulty
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behavior may be detected on processor p. Assume that the
grid points owned by processor p’ are denoted by ui][j], a <
i<a+q,b<j<b+r. Letus also assume that ufa][b] is a red
point. (The treatment when u[a][b] is a black point is simi-
lar.) Let us denote the row checksums over the red points of
the ith row owned by processor p’ by RCSR;3 and the row
checksums over the black points of the ith row owned by
processor p’ by RCSBib . Analogously, column checksums
for the red and black points of column j owned by proces-
sor p’ are denoted by CCSR} and CCSB; (for notational
convenience we assume a, b, q, and r are all even). That is,
by definition, we have '
RCSRY = " (ulil[2j] or ulil[2j + 1)),
Fsj<iys

(€1))

The equations defining the other checksums are similar.
The update equations for the row and column checksums
may be derived as before and are as follows

RCSR; = (1- @)RCSR? + 0.250(RCSBY, + RCSBY,, + 2RCSB” +
(ulillb - 1] or ulil[b + r]) - (ulil[b + r — 1] or ulil[bl),
where (i — a is even or odd)

where (i-aisevenorodd)a<i<a+q

(32)

RCSB; = (1 - @)RCSB! + 0.250(RCSR” , + RCSRY,, + 2RCSRY +
(ulillb + r] or ulil[b - 11) - (ulil[b] or ulillb + r — 11)),

where (i — a is even or odd) (33)

CCSR;‘ =(1- a))CCSR;‘ + O.25(1)(CCSB?_1 + CCSB?

j+1

+ ZCCSB].a +

(ula —1][j] or ula + qlljD) - (ula + q - 11[j] or ulalfjl)),
' where (j — b is even or odd) (34)

CCSB{ = (1~ @)CCSB; +0250(CCSRY, + CCSRY,, + 2CCSR? +
(ula + gqlljl or ula - 1[jD) - (ulalljl or ula + q — 1),

where (j— b is even or odd) 35)

Since we assume that at the start of the algorithm, processor p
receives both its own as well processor p”s data, the row and
column checksums of processor p’ for the next iteration may
be computed correctly. However, the computation of the row
and column checksums for subsequent iterations is compli-
cated by the fact that processor p requires the row checksums

RCSR® |, RSCBP ., RSCR®. , RCSB?

a—17 a-17 a+q”/ a+q”/
sums CCSR; ,, CCSB;_;, CCSR;,,, CCSB;,, and the new
values of the grid points ufa — 1]j], ula] [j1, ula + q - 11(j1,
ula + qlfjl, b <j < b + q, ulillb - 1], ufilb}, ufillb + q - 1],
ufillb + ql, a<i<a+ q for computing the checksum up-
dates using (32) through (35). Some or all of these quantities
may not be local to processor p. However, each of these
quantities is subjected to a checksum check on its pair proc-
essor. Only if all the checks pass are these quantities used in
updates involved in the next iteration. For example, the
grid elements communicated by processor p’ may be
checked before they are used in the subsequent iteration
since checksums involving these elements are available on
processor p (Each communicated grid element of p’ is in-
volved in a row or a column checksum check on p). Con-

the column check-
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currently, the checksums to be communicated by processor

¢’ to other processors to enable them to perform their

checksum updates for the next iteration (following the pair
processor approach, each checksum on processor p’ corre-
sponds to a row or column of the grid elements computed
by processor p) are also communicated to processor p which
owns the actual grid elements for which the checksums
have been computed. Processor p verifies that the commu-
nicated checksums equal the sum over the corresponding
grid elements. If the checks pass, we may assume that proc-
essor p”’s communicated data is free from errors and the
checksum update on p yields the correct values of the
checksums for the next iteration. If, on the other hand, the
data communicated by p” is corrupted, this will cause the
checksum check to fail on processor p and cause it to flag an
error. Finally, at the end of the algorithm, each processor
checks all the elements owned by its pair processor by ex-
changing data and verifying that the row and column
checksums match for every row and column owned by the
pair processor (Note that during the course of the algo-
rithm, only the communicated data is checked). The com-
plete check over all the grid elements may also be done af-
ter a fixed number of iterations has been completed, in the
interests of lower error latency. Note that in the final check,
each element is subjected to a row as well as a column
checksum check. Thus, a pattern of four compensating er-
rors is required for an error to pass undetected, which is
very unlikely in practice. This is illustrated in Fig. 15.

Column checksum check

Row checksum Pattern of

check \

four compensating errors

rroneous data element

Fig. 15. Pattern of four compensating errors which can cause checks to
pass.

The scheme described here also performs only O(n) op-
erations to check the communicated data and compute the
checksum updates, while O(1*) operations are required for
the updates of the grid elements. Thus, as in the scheme of
Section 3, the overheads for error-detection diminish with
increasing problem size. However, actual overheads for this
scheme can be expected to be greater because of the larger
number of checksum updates involved (O(n) compared to
O(1) for the previous algorithm) and the larger number of
messages communicated due to the pair processor ap-
proach. However, the error coverage of the scheme can be
expected to be higher owing to the more rigorous checks
communicated elements are subjected to and also due to
the fact that each element is subjected to two separate
checks, a row and a column checksum check. Additional
memory required is O(n) due to the introduction of row
and column checksums, compared to only O(1) for the al-
gorithm of Section 3. However, since the memory required
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by the original algorithm is O(n*), memory overheads are
not significant for either algorithm.

6 EXPERIMENTAL RESULTS

The effectiveness of an algorithm-based fault tolerance
method can be judged by evaluating it according to three
criteria. First, the percentage of false alarms, which are de-
fined as the percentage of times roundoff errors caused an
algorithm-based check to fail, must be low. Second, the er-
ror coverage, which may be defined as the percentage of
time hardware errors were detected due to a failed check,
must be high. Third, the overhead of the fault-tolerant algo-
rithm over the basic algorithm due to extra computations
involving the checks and their tolerance expressions, must
be as small as possible.

We implemented the both the error-detecting parallel
Red-Black SOR algorithms introduced in Sections 3 and 5
for solving the Laplace equation on a 16-processor Intel
iPSC/2 hypercube. Meshes of various dimensions were
simulated on the hypercube. Section 6.1 gives the false
alarm and error coverage results. Section 6.2 gives the tim-
ing overhead of the fault-tolerant algorithm over the basic
algorithm for various grid and mesh dimensions.

6.1 Error Coverages

In order to determine the false alarm percentage, we ran
our error-detecting parallel versions of the two SOR algo-
rithms on around 2,000 data sets in all without injecting
hardware errors. Any failed checks on these data sets could
then be assumed to be false alarms caused by the magni-
tude of roundoff errors exceeding the upper bound esti-
mate on roundoff errors provided by the tolerance expres-
sion. We varied grid sizes from 32 x 32 to 256 x 256, the
number of iterations from 100 to 1,000 and mesh dimen-
sions from 1 x 1 to 4 x 4. (Recall that our scaling and trans-
lating of initial data ensured that the data range being com-
puted on was between 0 and 1 in all cases.) However, not
even a single case of false alarm was observed for either
algorithm over this set of runs involving data sets with
widely different characteristics.

Error coverages were determined by simulation of tran-
sient and permanent bit and word level errors over 2,500
runs in all over different data sets. Permanent word (bit)
level errors were simulated by corrupting the entire word
(flipping a chosen bit) of the result with a probability of 0.5
every time a floating point computation was performed. To
simulate transient errors, we performed the data corruption
for the result of a floating point computation with only a
probability of 0.01. Error coverages are reported as the total
number of runs in which errors were detected, divided by
the total number of runs in which errors were injected. The
grid size and mesh dimensions were varied over the same
range as for the false alarm calculation, while the number of
iterations were varied from 100 to 500. For the algorithm of
Section 3, we were interested in developing a version with
as low overhead as possible, and therefore we did not
adopt the pair processor approach. (The pair processor ap-
proach was adopted instead for the algorithm of Section 5,
since in this case we were interested in as high error cover-

ages as possible.) For the algorithm of Section 3, error cov-
erage of word level errors was always 100%, whether the
errors were permanent or transient, indicating the effec-
tiveness of our this algorithm for detecting errors of a gross
nature. Error coverages of transient and permanent bit level
errors were around 65%. However, most of these unde-
tected errors were in the less significant bits. In order to
illustrate the effectiveness of this algorithm in detecting
serious errors, we computed new error coverages for only
those errors which caused a change of 0.1% or more in the
element values they were injected in. Subject to this restric-
tion, we found error coverages of bit level errors to be
around 98%, showing the effectiveness of our method in
detecting errors that resulted in significant data corruption.
The results are summarized in Table 1. The column heading
“Significant Error Coverage” refers to errors which caused
a change of more than 0.1% in the elements they were in-
jected in and were detected by our algorithm. The notion of
“Significant Errors” for ABFT techniques was introduced in
[12], [13] although the criterion for an error to be significant
is somewhat different from the one used in this paper.

TABLE 1
ERROR COVERAGE RESULTS FOR ERROR-DETECTING SOR
ALGORITHM OF SECTION 3

Error Significant

Coverage | Error Coverage

Transient Bit-level 65 98
Transient Word-level 100 100
Permanent Bit-level 69 98
Permanent Word-ievel 100 100

For the algorithm described in Section 5, error coverages
were expectedly higher (Error expressions to determine the
tolerance for the checks were calculated in a manner similar to
those for the algorithm of Section 3 and are not described in
this paper). The error coverage results are indicated in Table 2.
We observe that error coverages are extremely high even for
the transient and bit level cases, indicating that this method is
truly effective in detecting even slight data corruption.

TABLE 2
ERROR COVERAGE RESULTS FOR ERROR-DETECTING SOR
ALGORITHM OF SECTION 5

Error Significant

Coverage Error Coverage

Transient Bit-level 98 100
Transient Word-level 100 100
Permanent Bit-level 98 100
Permanent Word-level 100 100

6.2 Timing Overheads

Fig. 16 shows the timing overheads of the error-detecting
Red-Black SOR algorithm with checks and error bounding
over the basic Red-Black SOR algorithm. incorporating no
error detection for various mesh dimensions and grid sizes.
We did not use the pair processor approach for this method
(as illustrated by the results in Section 6.2, error coverages
were high even though each processor was responsible for
checking its own data). We performed a sum over all red
and black points and compared with the values stored in
the checksum variables once for every 100 iterations. The
overheads drop to around 1% as we increase the grid size,
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which is only to be expected since we perform only O(n)
check operatlons in each iteration of Red-Black update,
compared to O(%) operations required for the updates of
each red and black point in the grid.

—O5——  4x4mesh
B 2x4 mesh

20 coefe---= 0 2x2 mesh

Percent
Overbead

Grid Dimension

Fig. 16. Timing overhead of the error-detecting algorithm of Section 3
over the basic algorithm.

Fig. 17 depicts the overheads of the error-detecting algo-
rithm of Section 5 over the basic algorithm. The pair proces-
sor approach was employed for this algorithm since we
were interested in obtaining as high error coverages as pos-
sible. The overheads are considerably greater than the pre-
vious case, and are contributed to mainly by the fact that
message communication more than doubles over the basic
algorithm since the pair processor approach is employed,
while for our implementation of the previous algorithm, the
pair processor approach was not adopted and thus the
message count remained the same. However, as expected,
the overheads become smaller for larger data sizes, and
drop to around 25% for grids of dimensions 256 x 256.

7 RELATION TO PRIOR WORK

At this point we would like to mention an earlier work on
developing an error-detecting SOR algorithm [15]. The al-
gorithm is based on suitably choosing the initial values on
the grid so that at subsequent time steps, solutions at each
point are monotonically increasing. The algorithm uses a
fine-grained data distribution in which each processor
computes on only two adjacent data points and is thus un-
suitable for implementation on a general purpose distrib-
uted memory parallel computer such as the testbed we ran
our experiments on. Also, the monotonic behavior is pre-
served only for a certain range of the relaxation parameter
@, unlike our algorithm which does not restrict the range of
@ in any way in order to achieve fault-tolerance. The SOR
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Fig. 17. Timing overhead of the error-detecting algorithm of Section 5
over the basic algorithm.

algorithm in [15] requires individual checking of each ele-
ment of the grid following each SOR iteration to determine
whether the monotonicity property holds, which represents
a large and constant overhead. In contrast, both the algo-
rithms introduced in this paper only require checking the
boundary elements of the grid subbblock on each proces-
sor, which requires only O(n) steps as compared to O(n”)
SOR update operations for each iteration, and a final check
step after convergence has been achieved (or the specified
number of SOR iterations have been performed), which
requires O(n’) steps. Thus the checking overhead for our
algorithms diminishes both with increasing grid size and
increasing the number of iterations between checks of all
the grid elements (Recall that the communicated data is
subjected to checks at every iteration). We would like to
mention here that the algorithm in [15] was not evaluated
for error coverage or time overhead.

8 CONCLUSIONS

In this paper, we have discussed in detail an error-detecting
algorithm-based on the Red-Black SOR algorithm for solv-
ing the Laplace equation. Minor modifications of the algo-
rithm can be used to derive error-detecting versions of it-
erative algorithms for solving other PDEs with a similar
form such as the Poisson equation. We have discussed ex-
tensions to deal with multicoloring and nonrectangular
solution domains. We have also discussed-an alternative
error-detecting approach for the same class of problems
which may be used when higher error coverage is desired
at the cost of higher overheads. We have presented a new
method of dealing with the roundoff accumulation problem
which complicates the invariant check step in algorithm-
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based fault-tolerant encodings based on error analysis in-
corporating some simplifications in the interest of keeping
overheads low. We have shown by our results on a wide
variety of data sets that our algorithms possess low over-
head and demonstrate high error coverage.
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